# Quick Start Guide ## Verify Installation After installation, verify everything is working: ```bash # Check all dependencies kintsugi check # Show version info kintsugi info # Generate config template kintsugi template -o my_config.json ``` ## Command Line Interface KINTSUGI provides a CLI for common operations: ```bash # Check dependencies kintsugi check # Show system info kintsugi info # Generate configuration template kintsugi template -o config.json # Run registration workflow kintsugi register config.json --dry-run kintsugi register config.json ``` ## Python API ```python import kintsugi # Check dependencies kintsugi.check_dependencies() # Get configuration template config = kintsugi.get_config_template() # Access modules from kintsugi import Kreg, Kview2, Kstitch # Registration from kintsugi.kreg import Valis registrar = Valis( src_dir="/path/to/images", dst_dir="/path/to/output", reference_img_f="cycle1.tif", ) registrar.register() # Visualization from kintsugi.kview2 import imshow, curtain, crop ``` ## Jupyter Notebooks The following Jupyter notebooks provide step-by-step workflows: ### 1. Parameter Tuning and Testing Test illumination correction, stitching, deconvolution, and EDoF. - `notebooks/1_Single_Channel_Eval.ipynb` ### 2. Batch Processing Batch processing for illumination correction, stitching, deconvolution, EDoF, and registration. - `notebooks/2_Cycle_Processing.ipynb` ### 3. Signal Isolation Autofluorescence subtraction, filtering, and final processing to isolate signal. - `notebooks/3_Signal_Isolation.ipynb` ### 4. Segmentation Analysis InstanSeg segmentation, feature extraction, and spatial analysis. - `notebooks/4_Segmentation_Analysis.ipynb` ### 5. Vessel Analysis Specialized analysis for vessel structures. - `notebooks/Vessel_Analysis.ipynb` ### Running Notebooks Launch VS Code from the activated environment: ```bash conda activate KINTSUGI code . ``` **Important**: Always launch VS Code from the activated conda environment to ensure all packages are available. ## Data Organization Create a `data` folder in the KINTSUGI directory and move your image data there: ``` KINTSUGI/ └── data/ └── [your image files] ``` ## Next Steps - See the [Workflows](workflows.md) guide for detailed processing pipelines - Check [Troubleshooting](TROUBLESHOOTING.md) if you encounter issues - Review the [API Reference](api.md) for programmatic usage